Induced Dipole–Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides
نویسندگان
چکیده
Amyloid-forming proteins undergo a structural transition from α-helical to disordered conformations and, ultimately, cross-β fibrils. The unfolding and aggregation of the amyloid β-peptide (Aβ) have been implicated in the development and progression of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). However, the events underlying the initial structural transition leading to the disease state remain unclear. Although most cases are sporadic, several genetic variants exist that alter the electrostatic properties of Aβ and lead to more rapid unfolding and more severe phenotypes. In the present study, the enhanced unfolding is shown to be due to the mutated side chains altering the local peptide-bond dipole moments leading to local destabilization of the α-helix, as determined from polarizable molecular dynamics (MD) simulations of wild-type (WT) Aβ fragments and several common mutations. The local perturbation of the helix then leads to progressive unwinding of the α-helix in a cooperative fashion due to decreases in adjacent (i ± 1) and hydrogen-bonded (i + 4) peptide-bond dipole moments. Side-chain dynamics, subsequent variations in dipole moments, and ultimately the response in the peptide-bond dipole moments are all modulated by solvent dielectric properties based on simulations in water versus ethanol. The polarizable simulation results, along with simulations using the additive CHARMM36 force field, further indicate that cooperativity due to the alignment of peptide bonds leading to enhanced dipole moments is a fundamental force in stabilizing α-helices.
منابع مشابه
Effect of Induced Dipole-Induced Dipole Potential and the Size of Colliding Particles on Ion-Quadrupolar Molecule Collision Rate Constants
Classical trajectory (Monte Carlo) calculation is used to calculate collision rate constants of ion-quadrupolar molecule interactions for the H¯+C2H2 system. The method presented here takes into account the effect of the induced dipole-induced dipole potential on ion-quadrupolar molecule collision rate constants. It is also assumed that the colliding particles have a d...
متن کاملThe Full Length Hepatitis C Virus Polyprotein and Interactions with the Interferon-Beta Signalling Pathways in vitro
Background: Hepatitis C is a global health problem. The exact mechanisms by which hepatitis C virus (HCV) can evade the host immune system have become controversial. Whether HCV polyproteins modulate IFN signalling pathways or HCV proteins are responsible for such a property is the subject of interest. Therefore, an efficient baculovirus delivery system was developed to introduce the whole geno...
متن کاملویژگیهای بیوشیمیایی گیاهان آرابیدوپسیس جهشیافته ntrc طی پیری القاء شده توسط تاریکی
Abstract Thioredoxins are invoved in redox regulation of many cellular processes. In this study the role of NADP+-Thioredoxin reductase C (NTRC) in the control of leaf senescence was investigated by biochemical characterization of Arabidopsis ntrc mutants. Forty days old wild type and two ntrc mutant lines were incubated either under normal dark-light or continous darkness regimes for 6 days as...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملDiscrete Molecular Dynamics Study of wild-type and Arctic-mutant (E22G) Aβ16−22 Folding and Aggregation
Substantial clinical and experimental evidence supports the hypothesis that amyloid β-protein (Aβ) forms assemblies with potent neurotoxic properties that cause Alzheimer’s disease (AD). Therapeutic targeting of these assemblies would be facilitated by the elucidation of the structural dynamics of Aβ aggregation at atomic resolution. We apply the ab initio discrete molecular dynamics approach c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 119 شماره
صفحات -
تاریخ انتشار 2015